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Abstract—During extreme weather conditions and natural
disasters caused by meteorological phenomena, it is imperative
to enable navigation that minimizes the outdoor section of
recommended paths. Existing indoor-outdoor navigation and
localization systems have evolved to support queries like the
shortest distance, either outdoor or indoor, with additional
constraints. However, most of them work in isolation and do
not take into consideration the external natural conditions, like
the weather, that an individual may experience walking outside
during a polar vortex or heatwave.

In this paper, we present CAPRIO, a context-aware path
recommendation system whose objectives are two-fold: (i) mini-
mizing outdoor exposure; and (ii) minimizing the distance of the
recommended path. We propose a novel graph representation
that integrates indoor and outdoor information to discover
paths that satisfy outdoor exposure and distance constraints.
We measure the efficiency of the proposed solution using two
real datasets collected from the University of Pittsburgh and
University of Cyprus campuses. We show that we can achieve
comparable distance to the state-of-the-art in minimizing outdoor
exposure.

Index Terms—indoor, outdoor, navigation, path recommenda-
tion, graph processing, context-aware.

I. INTRODUCTION

Recently, new navigation and localization services have
emerged to enhance shortest path discovery, particularly, be-
cause people are spending 90% of their time indoors [1]. New
indoor navigation services optimize the shortest path search
using magnetic fields for localization and a modified shortest
path formulation [2]. An indoor environment has many ele-
ments with unique properties that define the indoor route [3].
On the other hand, outdoor systems are well established and
enhanced through a variety of data collection and processing
techniques, e.g., OpenStreetMap, Google Maps, Bing Maps,
Here WeGo, TomTom, Waze. Several systems integrate social
network data or crowdsourcing data to produce enriched path
recommendations using machine learning to provide alterna-
tive navigation services through immersive technologies (e.g.,
augmented reality) [4], [5], [8].

Unfortunately, navigation solutions primarily focus on ind-
oor or outdoor localization and navigation; Only a handful of
the state-of-the-art solutions consider indoor-outdoor seamless
transition techniques [6] rather than a unified model that can
be beneficial for the shortest path discovery [7]. In many
cases, the combination of indoor and outdoor information
can produce new, context-aware paths that are essential for

Fig. 1. (left) The public are being advised to take every precaution to avoid
the extreme heat in Japan (BBC 2018), (right) An elementary school closed
due to cold weather in Des Moines, Iowa (CNN 2019).

the everyday activities of an individual. The following real-
world situations increase the possibility of predefined paths
becoming non-viable options due to severe weather, or when
emergency transportation services are needed the most:

Severe Weather Avoidance: Severe weather can lead to
natural disasters like the tsunami in Indonesia 2004, or the
heatwave in Japan 2018 as seen in Figure 1 (left), and
unbearable outdoor conditions like the Polar vortex in the USA
2019 as seen in Figure 1 (right). In this scenario, providing
a context-aware path that minimizes outdoor exposure is vital
for the people who must travel and simultaneously avoid the
extreme weather conditions.

Emergency Transportation: During severe weather con-
ditions, people are more vulnerable to heat (e.g., hyperthermia,
heat exhaustion, heat cramps, heat stroke) and cold-related
illnesses (e.g., hypothermia, cold weather injuries, frostbite).
In this scenario, being able to transfer severely vulnerable
people through a context-aware path with minimum outdoor
exposure could play a crucial role during an emergency.

Minimizing the outdoor exposure of a recommended path
is of imperative importance to pedestrians, since the afore-
mentioned scenarios could be very dangerous to one’s well-
being. The traditional navigation and localization services
are not sufficient enough to recommend context-aware paths
and improve the quality of the route. Thus, context-aware
navigation and localization services should work together to
minimize the outdoor exposure while considering the distance
of the path.

In this paper, we present CAPRIO, which combines na-
vigation and localization services to minimize the outdoor
exposure and the distance of the path. The core of the
system is a novel algorithm, coined Graph Integrator and Path
Discoverer (GIPD), that integrates the external nodes (e.g.,



TABLE I
SUMMARY OF NOTATION

Notation Description

voj , Vo outdoor/external vertex, set of all outdoor/external ver-
tices j = 1, . . . , k

vil , Vi indoor/internal vertex for an outdoor vertex voj , set of
all indoor/internal vertices j = 1, . . . ,m

eoj , Eo outdoor/external edge, set of all outdoor/external edges
j = 1, . . . , k

eil , Ei indoor/internal edge, set of all indoor/internal vertices
j = 1, . . . ,m

Go(Vo, Eo) outdoor/external graph
Gi(Vi, Ei), indoor/internal graph
o outdoor exposure factor
d distance
P The recommended path

building) with the internal nodes (e.g., entrances, escalators,
exits) to provide a path with minimum outdoor exposure and
the shortest distance overall.

The GIPD algorithm achieves the integration in a manner
that keeps the size of the graph used to search for the shortest
path to be no larger than the external graph of the buildings. It
allows the CAPRIO system to provide a context-aware path in
contrast with the traditional path recommended by the existing,
well-known systems mentioned above.
The contributions of this paper are summarized as follows:

• We propose a novel graph integration algorithm, coined
GIPD, which solves the discovery of the path based on
outdoor exposure and distance metrics (Section II).

• We propose, CAPRIO, a context-aware path recommen-
dation prototype system that implements GIPD to sup-
port the exploration of indoor and outdoor environments
(Section III & IV).

• We measure the efficiency of the proposed algorithm
using two real datasets consisting of buildings in the
University of Pittsburgh and the University of Cyprus
campuses. Our evaluation shows that CAPRIO can reduce
up to 60% of outdoor exposure, while in some cases at
the cost of increased indoor distance (Section V).

II. GRAPH-BASED PATH DISCOVERY ALGORITHM

In this section, we introduce the details of our Graph Inte-
grator and Path Discoverer (GIPD) algorithm (see Algorithm
1), which is where our main contribution lies. Additionally,
this section formalizes our system model, assumptions, and
problem. The main symbols and their respective definitions
are summarized in Table I.

A. Problem Formulation

Given a specific set of indoor elements along with a source
and a destination point, this work aims to minimize the outdoor
exposure with the minimum distance producing a path from the
source to the destination.

The efficiency of the proposed technique in achieving the
above goal is measured by the following objectives:
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Fig. 2. CAPRIO is a system that can provide a recommended path with
the minimum outdoor exposure and distance for each request along with the
respect source and final destination.

Definition 2.1: Outdoor Exposure (O) is the percentage of the
path that is outdoors.

Definition 2.2: Distance (D) is the distance of the path between
the source and the destination point.

B. The GIPD Algorithm

In order to set the GIPD algorithm in to context it is useful
to understand the operational aspects of the our proposed CA-
PRIO system. Consider the case of a request/query submitted
to CAPRIO shown in Figure 2.

Firstly, CAPRIO is extracting, transforming, and loading the
data into the system. Then, the GIPD algorithm integrates the
internal Vi nodes representing entrances, escalators, or exits,
and external Vo nodes representing buildings, using a unified
graph GIO(Vi ∪ Vo, Ei ∪ Eo) as shown in Figure 2 (center).

Particularly, the algorithm calculates the weight of each
edge using the internal nodes. For example, the weight w1,2

of the edge from vo1 to vo2 vertex is calculated using the Vi2 ,
which is a set of internal nodes for the vertex vo2 . Then, the
algorithm produces a path between the source s and the final
destination f using the well known Dijkstra algorithm on the
external graph. The crux of our algorithm is that it controls
the scale of the graph to be traversed by the Dijkstra algorithm
by fusing the internal graphs as weights in the external graph.

The weight of the external edge is computed through the
following equation:

WEIGHT (voj , vok , o) = o ∗DTi(voj , vok)

+DTo(voj , vok)
(1)

where o is a tunable outdoor exposure factor that ranges
from 0− 1 that controls the trade-off between minimizing the
outdoor exposure and the overall travel distance d with 0 being
the minimum outdoor exposure; DTi(voj , vok) is the internal
travel distance within the node voj that is required to go to
the exit vjk, which leads to the closest outdoor travel distance
between voj and vok ; and DTo(voj , vok) is the external travel
distance between voj and vok .



Algorithm 1 - CAPRIO Path Discovery Algorithm:
Graph Integrator and Path Discoverer (GIPD) algorithm
Input: s: source;f : destination; Vo: outdoor vertices; Vi:
indoor vertices; o: outdoor exposure factor; d: distance
Output: Recommended path P

. Step 1: Graph creation and initialization
1: G← Vo . Initialize a graph using all vertices Vo

. Step 2: Weights population
2: for all voj ∈ Vo do . For each edge calculate the weight
3: for all vok ∈ Vo do
4: if voj ! = vok then
5: w ←WEIGHT (voj , vok , o, d)
6: end if
7: G← EDGE(voj , vok , w)

. A new edge is added to graph G
8: end for
9: end for

. Step 3: Shortest path discovery
10: P ← DIJKSTRA(G, s, f)

. Execute Dijkstra algorithm over the newly created graph

Specifically, the GIPD algorithm works as follows: as
illustrated in Algorithm 1, the graph G is initialized using all
the vertices Vo. In the weights population step (Step 2 - lines
2-9), for each edge voj , vok of external nodes Vo, the weight
is calculated using the WEIGHT function (see Equation 1)
based on the outdoor exposure o. Then, the EDGE function
creates a new edge with the weight w and adds the edge to
the graph G. Finally, the shortest path discovery step (Step
3 - line 10) generates the path using the Dijkstra algorithm,
which produces a path with minimum path weights.

We designed our proposed algorithm to support any indoor
path recommendation system as a plugable internal travel
distance calculation engine.

III. THE CAPRIO ARCHITECTURE

We express our proposed architecture in three layers (see
Figure 3), namely Data Layer, Processing Layer, and Appli-
cation Layer.

The Data layer transforms the data from various sources
into a predefined format to ship them over to the Processing
Layer. The input data can be regular files on a local or
distributed file system, data streams, or external APIs.

The Processing layer has a main module with two com-
ponents, namely graph-based integration and path discovery.
The core module that runs the GIPD algorithm converts the
data from different sources into external and internal nodes.
Then, the core module will integrate the nodes into a graph to
produce a path that minimizes outdoor exposure and distance.
The GIPD algorithm is currently using Anyplace to calculate
the internal travel distance. Indoor spaces have many attributes
and constraints such as the distance and the accessibility of
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Fig. 3. CAPRIO is an efficient graph-based data integration system that
enables path discovery and targets the minimization of the outdoor exposure
o and the distance d.

space [9]. Door to Door distance impacts the calculation and
the processing of the graph-based data integration module.

The GIPD algorithm is being triggered through a web
request using the CAPRIO API in order to discover the
context-aware path using the above-integrated graph. Initially,
the algorithm calculates the weights of each edge of the
external graph by examining the travel distance within each
internal graph (i.e., nodes). Once the weight for each edge has
been assigned, traditional graph techniques could be applied
on the external graph that resulted from the previous step in
order to obtain the path.

The Application layer is equipped with an easy-to-use map-
based web interface layer that hides the complexity of the sy-
stem through a simple and elegant web interface. Additionally,
it provides an open API to enable the development of smart
application over CAPRIO architecture.

CAPRIO has a modular design and an exposed API to allow
the scalability and extensibility of the system. This allows the
core of the system to be updated using different graph-based
algorithms without affecting the user interface.

One of the main advantages of CAPRIO is the ability to
produce a unified, context-aware path that considers both the
external graph that consists of buildings and streets and the
internal graph that consists of the entries and exits inside each
building. To do so, CAPRIO has employed state-of-the-art
techniques for construction and integration of both the external
and internal graphs.

In particular, for the construction of external graph and
routing, CAPRIO relies on the Google Maps API, and for the
construction of internal graph and routing CAPRIO relies on
the state-of-the-art indoor navigation system Anyplace [1].

To combine the external graph with the internal graph of
each building, CAPRIO uses both the street distance reported



Fig. 4. (top) The CAPRIO data exploration user interface was developed on top of Google Maps, which enables the direct comparison between our recommended
path (red line) and paths from traditional navigation systems, like Google Maps (blue line). (bottom) The CAPRIO’s GIPD algorithm can be visualized as an
animated graph that shows the resulted graph along with the path comparison on top of Google Maps.

by the Google Maps API and the internal travel distance of
each building produced by Anyplace in order to calculate the
integrated weights of each external edge.

IV. CAPRIO PROTOTYPE DESCRIPTION

We have implemented a prototype of CAPRIO incor-
porating an interactive map and integrating several graph
techniques in the back-end, which was developed using Play
Framework 2.71. The CAPRIO web interface is implemented
in HTML5/CSS3 along with extensive usage of Leaflet2 and
Cytoscape.js3.

An illustrative path exploration interface is shown in Fi-
gure 4. We have implemented a query sidebar that allows
the user to execute a variety of template queries. The query
sidebar has three main tabs: (i) the options tab that enables
the user to choose the source and the destination for the
recommended path along with its outdoor exposure/distance
preference, shown in Figure 4 (top); (ii) the graph tab that
animates the path using a graph visualization to provide
visually the algorithms and techniques behind the paths, il-
lustrated in Figure 4 (bottom); and (iii) the settings tab that
activates/deactivates elements on the main user interface.

V. EXPERIMENTAL METHODOLOGY AND EVALUATION

This section presents an experimental evaluation of our pro-
posed CAPRIO system and its core GIPD algorithm. We start
out with the experimental methodology and setup, followed
by two experiments. In the first experiment, the performance
of CAPRIO is compared against two baseline approaches with

1Play Framework: https://www.playframework.com/
2Leaflet: https://leafletjs.com/
3Cytoscape.js: http://js.cytoscape.org/

respect to various metrics over two real datasets. The second
experiment examines the influence of the shortest path control
parameters on the performance of CAPRIO.

A. Methodology

This section provides details regarding the algorithms, me-
trics, and datasets used for evaluating the performance of the
proposed approach.

Testbed: Our evaluation is carried out on a dedicated Windows
10 server. The server is featuring 12GB of RAM with 4 Cores
(@ 2.90GHz), a 500 GB SSD and a 750 GB HHD.

Algorithms: The proposed CAPRIO is compared with the
following approaches:

• GMaps: This is the industrial solution by Google, called
Google Maps.

• USP: We have implemented the unified graph modeling
for shortest path proposed in [7].

Note that GIPD is the core algorithm of the proposed
solution in this paper, Algorithm 1.

Datasets:

• PITT: This is a real dataset that was collected inside
the University of Pittsburgh campus and consists of 6
buildings with exits ranging between 2 to 6 per building.

• UCY: This is a real dataset that was collected inside the
University of Cyprus campus and consists of 11 buildings
with exits ranging between 1 to 7 per building.

Metrics: We evaluate the performance of CAPRIO using the
metrics defined in Section II-A in all experiments:
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Fig. 5. The outdoor exposure percentage comparing CAPRIO, USP, and
Google Maps (GMaps) for UCY and PITT dataset using O = 0%, SPA =
Dijkstra.
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Fig. 6. The distance of the recommended path comparing CAPRIO, USP,
and Google Maps (GMaps) for UCY and PITT dataset using O = 0%,
SPA = Dijkstra.

• Outdoor exposure (O): measures the total outdoor ex-
posure of the recommended path, as a percentage of the
whole path.

• Distance (D): measures the distance of the generated
paths.

B. CAPRIO Performance

In the first experiment, we evaluate the performance of the
proposed CAPRIO algorithm against the two state-of-the-art
solutions over the datasets introduced in Section V-A.

In Figure 5, we can easily observe that CAPRIO outper-
forms GMaps and USP having the lowest outdoor exposure.
Particularly, the proposed CAPRIO algorithm provides around
35% less outdoor exposure O compared to GMaps and USP
approaches. This is due to the fact that CAPRIO prioritizes
indoor paths through the integration process for the produced
graph, described in Section III.

In terms of distance D, CAPRIO has slightly longer distance
around 100m additional distance, in comparison with GMaps
and USP for the PITT dataset, as shown in Figure 6. For the
UCY dataset, CAPRIO has the slightly shorter distance, around
30m, in comparison with the GMaps and around 20m longer
than USP. This happens due to the fact that the distances
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Fig. 7. CAPRIO provides the flexibility to run any shortest path algorithm
over the result integrated graph. (Left) Outdoor exposure for all three well
known SPAs, (Right) Distance for the three well known SPAs

inside the University of Cyprus campus are relatively small
and walking through buildings can result in shorter overall
distances than an outdoor-only path. The path can be provided
by a shortest path algorithm parameter that will be investigated
in the next experiment.

Figure 5 and Figure 6 clearly illustrate the trade-off between
the outdoor exposure O and the distance D objectives on the
results of the compared approaches, since GMaps (only out-
door) approach obtained the worst possible outdoor exposure
O = 100% with a relatively short distance D.

C. Shortest Path Algorithms (SPA)

In this experiment, we examine the influence of the shortest
path algorithm parameter on the performance of the proposed
CAPRIO in terms of O and D.

Figure 7 shows that any shortest path algorithm can be
chosen as the SPA parameter without affecting the overall
performance of the GIPD algorithm in terms of outdoor ex-
posure and distance. This allows CAPRIO to be: (i) extremely
versatile by replacing the last step of GIPD algorithm with
any shortest path solution; and (ii) very flexible considering
the integration of the weights for the final graph based on
different approaches.

VI. RELATED WORK AND BACKGROUND WORK

In this section, we present the background and related work
in systems that can provide outdoor, indoor, or combined
navigation and path recommendation.

A. Outdoor Path Recommendation

Recently, outdoor route recommendation systems have been
enriched with external information that may affect the duration
of the route. For example, Dejavu is a path navigation system
that utilizes cell-phone sensors to provide accurate and energy-
efficient outdoor localization [10]. Gervey et al. demonstrate
how an alternative outdoor path can be generated based on the
safety of a route [11]. On the other hand, there are systems
that are trying to provide the fastest and simplest route for
a destination [12]. Mata et al. show how social network data
from a user profile may affect the outdoor path recommenda-
tion [13] and enrich it using augmented reality navigation [4].
Other systems focus on the temporal or personal preferences
of the user to discover outdoor activities [14].



B. Indoor Path Recommendation

Indoor localization and navigation services have emerged
due to the rapid growth of new large buildings (e.g., shop-
ping centers, campuses, building complexes). Anyplace is an
infrastructure-free indoor navigation system that uses sensing
data from smartphones to determine the user’s location [1].
Delail et al. proposed a context-aware system that enriches
the indoor information by using augmented reality to provide
indoor navigation [15]. Indoor environment and context are
very important to determining the best indoor navigation route,
especially to impaired people [16], [17]. Park et al. propose
an indoor pedestrian network data model for emergency trans-
portation services [18]. Additionally, Afyouni et al. illustrate
how to process indoor continuous path queries over traditional
database management systems using a hierarchical, context-
aware data model [19].

C. Indoor-Outdoor Path Recommendation

The majority of the indoor-outdoor systems focus on the se-
amless transition between indoor and outdoor navigation [20].
Additionally, IODetector detects the indoor-outdoor environ-
ment changes accurately and efficiently, allowing the deve-
lopment of context-aware mobile applications [21]. IONavi
is a joint indoor-outdoor navigation solution that uses mo-
bile crowdsensing to create a collection of indoor-outdoor
paths. Then produces an indoor-outdoor path based on the
generated collection [8]. Similarly, CrowdNavi solves the last-
mile navigation problem using crowdsourcing and the guider-
follower model [22]. Jensen et al. presented a unified model of
indoor and outdoor spaces that can provide the shortest path
by exploiting the nature of buildings and roads [7].

VII. CONCLUSIONS

In this paper, we present a novel graph-based data inte-
gration and routing system, coined CAPRIO, that leverages
existing graph exploration algorithms and systems to unify
both indoor and outdoor information. The goal of the system
is to extract a path that satisfies the distance and the outdoor
exposure requirements according to a user’s preference. Our
experimental results also confirm our initial hypothesis that
GIPD can provide paths using the indoor and outdoor infor-
mation to minimize the outdoor exposure and the distance.

In the future, we aim to integrate richer contextual infor-
mation (e.g., traffic, building accessibility, weather conditions)
into both the internal and external nodes to produce a more
robust and context-aware system that can better assist the user
in finding and determining the most appropriate path based on
all available information.
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